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Abstract. Previous studies of magnetoinductive waves in homogeneous media with resonant elements con-
sisting of capacitively loaded metallic loops are extended to the case when a single wave from one medium
is incident upon another one. The relationship between the input and output angles and the reflection and
transmission coefficients are determined with the aid of the dispersion equation for different scenarios. An
expression is obtained for the power density vector, and it is shown that its component perpendicular to
the boundary is conserved across the boundary. Using different configurations of the elements it is shown
that both positive and negative refraction may occur.

PACS. 41.20.Jb Electromagnetic wave propagation; radiowave propagation

1 Introduction

Research on metamaterials has so far mainly been directed
at the properties of the elements [1–5] and their collective
behaviour [6,7]. The principal aim is to change the effec-
tive permittivity and permeability of the material as seen
by a transverse electromagnetic wave. However, similar el-
ements may also support other types of wave, as shown
by Tretyakov [8] for loaded dipoles and by Shamonina
et al. [9,10] for capacitively loaded metal loops. In the lat-
ter case, the waves arise due to induced voltages caused by
magnetic coupling between the elements: hence the name
of magneto-inductive or MI waves. They can propagate
within a band near the resonant frequency of the ele-
ments, the bandwidth being roughly proportional to the
coupling coefficient. They may exist as forward and back-
ward waves depending on the orientation of the elements.
Theoretical predictions for the one-dimensional case [9]
were confirmed experimentally by Wiltshire et al. both for
resonant loops [11] and for ‘Swiss Roll’ resonators [12]. An
application of MI waves in delay lines has been recently
proposed by Freire et al. [13], and focusing by MI waves
has been recently reported by Freire and Marques [14].

Since MI waves have been studied for only a few
years it is worth putting them in context. They are not
electromagnetic waves, in the sense that their disper-
sion characteristic is independent of the velocity of light.
They resemble more closely acoustic waves in crystals [15]
or plasma waves propagating along metallic nanoparticle
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chains [16,17], since the properties of all these waves are
derived from nearest-neighbour interactions, and may be
described by one-dimensional theories. MI waves could
have been predicted at any time since Faraday’s discovery
of magnetic induction but, as it happened, their properties
have only recently been investigated.

Reflection and refraction of waves traveling from one
medium into another medium is also an old subject. When
both media can be described by the material constants of
permeability and permittivity and the input wave is an
electromagnetic wave, then the solution is relatively easy.
When one of the media is a periodic one then the solu-
tion may be much more complicated. For an electromag-
netic wave incident upon a perfect crystal see for example
the analysis of Mahan and Obermair [18]. For the one-
dimensional case when an electromagnetic wave is incident
upon a periodically loaded medium an elegant formula for
the reflection coefficient is derived by Tretyakov [19]. The
solution is valid when no higher orders are present and the
interface is very simple (see Sect. 4 for what we mean by
a simple interface).

When both media are periodic there is little guidance
available on how to treat the reflection problem. Reflection
coefficients at the junction of two acoustic lattices or two
electric transmission lines, modeled by a periodic array of
L-C circuits, may be found in Brillouin’s book [15] in terms
of characteristic impedances. These formulae are valid as
long as the interface can be disregarded. A method that
is general enough to treat the reflection problem, includ-
ing the effect of the interface, was proposed by Syms [20]
in a quite different context when investigating diode laser
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arrays modeled as sets of coupled waveguides. The reflec-
tion that occurs at the interface of two dissimilar sets of
coupled guides is derived, by considering nearest neighbor
interactions across the boundary. We shall, in the present
paper, apply the same method for the 2D reflection and
refraction of MI waves. There is an added interest in the
solution of this set of problems since, due to the possibility
of supporting both forward and backward waves, negative
refraction may also take place.

The phenomenon of negative refraction has been
widely investigated in the last six years ever since Smith
et al. [6] and Pendry [21] rediscovered Veselago’s [22]
work on negative refractive index materials (which he
termed Left-Handed Media). Because a negative refrac-
tive index implies the presence of backward waves, Lin-
dell et al. [23] suggested that media exhibiting these ef-
fects be termed Backward Wave Media. Considering that
backward wave structures were widely used in microwave
engineering [24,25], experiments to explore negative re-
fraction could have been proposed any time in the last six
decades. As it happened, those investigations did not take
place until recently, spurred by Veselago’s concept of neg-
ative refractive index and Notomi’s [26] realization that a
backward wave structure exists in a strongly modulated
Photonic Band Gap material within a certain frequency
range near to the band edge. By now there is consider-
able experimental evidence for negative refraction both
in Left-Handed Media [7,27–30] and in Photonic Band
Gap (PBG) materials [31–34]. A different arrangement
was proposed by Luo et al. [35], who showed that for cer-
tain orientations in a PBG material negative refraction is
obtained without the existence of negative group veloc-
ity. In all the examples quoted above an electromagnetic
wave was incident from vacuum upon the material that
exhibited negative refraction. But electromagnetic waves
are not unique in this respect. Other waves may also suf-
fer negative refraction provided the parameters of the two
media are carefully chosen. In fact, Torres and Montero de
Espinosa [36] have recently designed an artificial acoustic
medium that can show negative refraction. In principle it
would be very simple to find negative refraction at the
boundary of two acoustic media if one could freely choose
the parameters. A simple condition is that at the same
frequency a forward wave should propagate in medium 1,
and a backward wave in medium 2 (due to the ‘optical’
branch).

The aim of this paper is to show how MI waves reflect
and refract at the boundary of two 2D media and find the
coefficients of reflection and transmission. MI waves are
highly suitable for studying refraction problems because
the dispersion characteristics can be easily controlled by
the parameters available (the loop diameter, number of
turns, value of capacitance, distance between the elements
and, most importantly the orientation of the loops). It is
also possible to make the arrangement biperiodic by al-
ternating the loop diameters in an array. This structure
leads to the equivalent of the ‘optical’ branch of acoustic
waves [37]. MI waves are so versatile that at a given fre-
quency practically any angle between the phase and group

Fig. 1. (a) Schematic representation and (b) actual realization
of a capacitively loaded metallic loop. The photograph is taken
from reference [10].

velocities can be realized. We emphasize that negative re-
fraction is only one by-product of our investigations. It is
not our aim to find the exact conditions for its existence;
we shall only discuss the issue here and offer an exam-
ple. To introduce the concepts we shall start in Section 2
with the 2D recurrence relationships between the currents
flowing in neighbouring elements, from which the disper-
sion relationship, group velocity and power density vector
of MI waves are derived. Section 3 is concerned with the
construction of the angle of refraction, and Section 4 with
the derivation of reflection and transmission coefficients.
Conclusions are drawn in Section 5.

2 Dispersion equation, group velocity and
power density

The basic element in our 2D array is the capacitively
loaded metallic loop, shown schematically in Figure 1, to-
gether with an actual realization [10]. Here, r is the mean
radius of the loop and rw is the radius of the wire. We
shall investigate the case when the loops are arranged in a
regular rectangular lattice with the same lattice constant
a in both directions. There are two configurations of in-
terest, the planar (all elements in the same plane, Fig. 2a)
and the planar-axial (all elements in the same plane in one
direction but with their plane perpendicular to the axis in
the other direction, Fig. 3a).

The fundamental relationship between the currents
may be derived from Kirchhoff’s voltage law, which re-
quires that the total voltage round any of the loops must
be zero. Taking into account only nearest neighbour inter-
actions, the relationship may be written in the form:

{jωL + 1/jωC}In,m + jωMx(In+1,m + In−1,m)
+ jωMy(In,m+1 + In,m−1) = 0 (1)

Here In,m is the current in the element (n, m) located
at the nth row and mth column, L and C are the induc-
tance and capacitance of an element, ω is the frequency
and Mx and My are the mutual inductances in the x and
y directions respectively. Note that the loop resistance
has been disregarded so we are concerned here with the
loss-less case only. For the planar configuration (Fig. 2a),
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(a)

(b)

Fig. 2. Planar configuration: (a) geometry of the loops; (b) dis-
persion curves for a = 2.25 r.

Mx = My and both values are negative due to the fact
that the magnetic field generated by one element crosses
the neighbouring element in the opposite direction. For
the planar-axial case (Fig. 3a) Mx is still negative, but
My is positive and under the present conditions (the ele-
ment spacing being the same in both directions) its value
is smaller than |Mx|. We assume the current in the form:

In,m = I0 exp { − j(nkxa + mkya)}. (2)

Here kx and ky are the x and y components of the propaga-
tion vector and I0 is a constant. Substituting equation (2)
into equation (1) we obtain the dispersion equation [9]:

ω/ω0 = A−1/2; A = 1 + κx cos(kxa) + κy cos(kya). (3)

Here κx and κy are coupling coefficients, defined as κx,y =
2Mx,y/L. The most useful presentation of the solution

(a)

(b)

Fig. 3. Planar-axial configuration: (a) geometry of the loops;
(b) dispersion curves for a = 2.25 r.

is in the form of loci of ω/ω0 = constant, where ω0 =
(LC )−1/2 is the resonant frequency of the element. These
are shown in Figure 2b for the planar configuration, tak-
ing κx = κy = −0.1 and a = 2.25 r. For the planar-axial
configuration the dispersion curves shown in Figure 3b are
calculated for κx = −0.1062, κy = 0.0661 and a = 2.25 r.
When kxa and kya � 1 the loci in Figure 2b tend to
circles and the loci in Figure 3b to hyperbolae.

For a wave characterized by propagation constants kx

and ky, the group velocity vg (which defines the direction
of power flow) may be obtained from equation (3) as:

vg = (aω3/2ω2
0){κx sin(kxa)i + κy sin(kya)j}. (4)

Here i and j are unit vectors in the x and y directions
respectively. For the planar case, when κx = κy and the
arguments of both sine functions are small, the group ve-
locity is in a direction opposite to the phase velocity – a
clear case of a backward wave. The relationship is more
complicated for the planar-axial configuration as will be
discussed in the next section.
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The group velocity vector defines the direction of
power flow. It follows from the basic physics that the
power density S (the power per unit length for the 2D
case) is found from the product of group velocity and Es,
the stored energy per unit surface, as follows:

S = (1/2)vgEs. (5)

The energy Es stored in any of the elements is given by the
sum of the energies in the inductance, the capacitance and
in the mutual inductances relating to nearest neighbours.
In terms of a single element (m, n), Es is given by:

Es = (1/2a2)
{
L|In,m|2 + |In,m|2/ω2C

+MxIn,m(I∗n+1,m + I∗n−1,m)

+MyIn,m(I∗n,m+1 + I∗n,m−1)
}

. (6)

Here, * denotes the complex conjugate. Using equa-
tion (1), equation (6) may be rearranged as:

Es = (Lω2
0/a2ω2)|In,m|2. (7)

The power flow may then be obtained for the wave in
equation (2) as:

S = (ω/2a)|I0|2{Mx sin(kxa)i + My sin(kya)j}. (8)

Clearly, S is independent of L and C; in fact, it only de-
pends on the terms Mx and My, which give rise to prop-
agation of energy between the elements. The power flow
tends to zero when kxa and kya are both near 0 or π,
and is maximum when they tend to π/2. An expression
for power may also be obtained by an entirely different
method. Multiplying equation (1) by I∗n,m, and subtract-
ing the complex conjugate of the resulting equation yields:

jωMx{(In+1,mI∗n,m − I∗n+1,mIn,m)

− (In,mI∗n−1,m − I∗n,mIn−1,m)}
+ jωMy{(In,m+1I

∗
n,m

− I∗n,m+1In,m) − (In,mI∗n,m−1

− I∗n,mIn,m−1)} = 0. (9)

Equation (9) is a form of zero-divergence condition anal-
ogous to Poynting’s theorem in the loss-less, steady state
case. The power flow vector may then be extracted by in-
spection. Inserting an arbitrary scaling constant for agree-
ment with equation (8), we obtain:

S = (jω/4a){Mx(In+1,mI∗n,m − I∗n+1,mIn,m)i

+ My(In,m+1I
∗
n,m − I∗n,m+1In,m)j} (10)

Equation (10) may be used when the current distribution
no longer consists of a single wave.

3 Reflection and refraction at the boundary
between two media

Let us assume now that we have two semi-infinite 2D me-
dia lying on each side of the line x = 0, that both can

Fig. 4. Refraction at the boundary of two media. Planar con-
figuration with ω01 �= ω02. The geometry of the loops.

support MI waves, and both have the same regular rect-
angular lattice with a lattice constant a. We shall consider
here two examples. In the first case, the elements in both
media are in the planar configuration, medium 1 having
the same parameters as in Figure 2b. Medium 2 differs
from medium 1 by having a slightly different capacitance
and consequently a slightly different resonant frequency
which we shall take as ω02 = 1.03 ω01, as shown in Fig-
ure 4. Assuming further that kxa and kya are small rel-
ative to unity the constant frequency curves are circles
with good approximation. They are shown in Figure 5a
for ω/ω01= 1.11.

It needs to be noted that we have here a rather unusual
situation. Normally, positive refraction is due to forward
waves propagating in both media. In the present case both
media support backward waves. This does not lead to any
complications but it means that if we want a wave incident
at a positive angle (i.e. the group velocity to be in the first
quarter) we have to choose kx1 and ky1 in medium 1, to
be in the third quarter.

The boundary condition to be satisfied is that the tan-
gential components of the phase velocities must match on
either side of the boundary, so that ky2 = ky1 and kx2 is
given by the construction shown in Figure 5a. The cor-
responding group velocities, very nearly opposite to the
chosen wave vectors, are shown in Figure 5b. It may be
seen from Figure 5a that the construction can be per-
formed for all possible values of kx1, i.e. at that particular
frequency a refracted wave exists for any incident wave.

In our next example we shall take the same planar con-
figuration on both sides of the boundary but now the reso-
nant frequency is assumed to be smaller in medium 2. We
take ω02= 0.97ω01. The ratio of the radii is then reversed,
as shown in Figure 6a. Using the same construction as be-
fore we find that kx2 > kx1 and refraction is now pointing
away from the perpendicular as may be seen in Figure 6b



R.R.A. Syms el al.: Positive and negative refraction of magnetoinductive waves in two dimensions 305

(a)

(b)

Fig. 5. Refraction at the boundary of two media. Planar con-
figuration with ω02/ω01= 1.03. (a) The loci ω/ω01= 1.11 and
corresponding phase velocity vectors; (b) directions for the
group velocity vectors, assuming (kx1a, ky1a) = (−0.18,−0.12)
π and (kx2a, ky2a) = (−0.38,−0.12)π.

where the corresponding group velocities are shown at the
boundary of the two media. It may also be seen in Fig-
ure 6a that no refraction is possible for a range of incident
angles. This is the case of total internal reflection.

In our third example we choose planar-axial configura-
tions on both sides. All the parameters are the same but
the orientation in medium 2 is at right angle to that in
medium 1 as shown in Figure 7a. Note that the lattice in
medium 2 is shifted by half a lattice constant relative to
that in medium 1, to ensure increased magnetic coupling
between the two media.

Our aim is now the same as in the previous examples:
we wish to have an incident wave with group velocity in
the first quarter. Let us remember that the group velocity
is the gradient vector of the loci ω = constant. Hence
any such locus in the second quarter of the dispersion
diagram, shown in Figure 3b, would qualify. Let us choose
the curve ω/ω01 = 1.01, plotted in Figure 7b with small
arrows showing the direction of the group velocity. The
relevant dispersion curve for the same value of ω/ω01 in
medium 2 is rotated by 90 degrees and is therefore in
the first quarter as shown also in Figure 7b. It may be
seen that there is only a very limited range of incident
wave vectors for which refraction exists. The effect could
be used for switching, modulation or spatial filtering for
example.

Choosing now a value of kya = 0.4π, and adhering
again to the rule that the tangential components of phase
velocity must match across the boundary, the group ve-
locities in the two media are as shown in Figure 7c. There
is clearly negative refraction in this case. Note that the

(a)

(b)

Fig. 6. Refraction at the boundary of two media. Planar con-
figuration. ω02/ω01= 0.97. (a) The loci ω/ω01= 1.08 and cor-
responding phase velocity vectors; (b) directions for the group
velocity vectors, assuming (kx1a, ky1a) = (−0.33,−0.19) π and
(kx2a, ky2a) = (−0.04,−0.12)π.

angle between phase and group velocities is slightly less
than 90 degrees in both media, so the waves on both sides
would qualify as forward waves. In fact, we could make
the angles between phase and group velocity decrease fur-
ther by choosing ω/ω0 = 1 or increase the angle (going
thereby into the region where the waves on both sides are
backward waves) by choosing ω/ω0 = 1.01. This is similar
to the conclusions reached by Luo et al. [35] in the sense
that negative refraction may occur without the presence
of backward waves, but in our case the refraction angle is
a strongly varying function of the incident angle.

We could also change the angle of negative refraction
in medium 2 by leaving medium 1 unchanged and rotat-
ing the orientation of the loops in medium 2, relative to
medium 1, by less than 90 degrees. In addition we could
considerably influence the dispersion characteristics of MI
waves in medium 2 by changing the resonance frequency
and the coupling coefficients. Clearly, there are many pos-
sible configurations that show negative refraction. Any
combination of the four possibilities may occur: (i) both
waves forward, (ii) both waves backward, (iii) incident
wave in medium 1 forward, refracted wave in medium 2
backward and (iv) incident wave in medium 1 backward,
refracted wave in medium 2 forward.

Previous efforts in the literature to find negative refrac-
tion were aimed at electromagnetic waves incident from
free space upon a periodic medium. In our case both media
are periodic. The MI wave, quite obviously, could not be
incident from free space because it can exist only in certain
periodic media. It needs to be noted that we have a large
amount of freedom choosing the dispersion characteristics
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(a)

(b)

(c)

Fig. 7. Refraction at the boundary of two media. Planar-
axial configuration with different orientations of the loops in
medium 1 and medium 2. (a) The geometry of the loops;
(b) the loci ω/ω01= 1.01 and directions for group velocity vec-
tors; (c) directions for the group velocity vectors for (kx1a,
ky1a) = (−0.39,−0.42)π.

in both media allowing thereby a large variety of refractive
angles, both positive or negative, to be realized.

4 Reflection and transmission coefficients

It is not trivial to derive the reflection and transmission
coefficients in a general case when the relative positions
of the elements on the two sides of the boundary are ar-
bitrary. Our method of solution, based on that of [20], is
generally applicable, but the solutions presented here will
be restricted to our three examples. Examples 1 and 2
represent the simplest possible case when only the capac-
itances on the two sides are different, and all the coupling
coefficients (not only those in the bulk media but that
across the boundary as well) are identical.

Under the nearest neighbor approximation the effect
of only one column on each side of the boundary needs to

be considered. These two columns are numbered n = 0, 1
and the rows as m − 1, m, and m + 1 in Figure 4. The
governing equation (1) is of course still valid. There are no
new features when it is applied to elements in column −1
or column 2. But for elements in the immediate vicinity
of the boundary the voltage induced in them depend not
only on currents on the same side but also upon currents in
elements on the other side of the boundary. The voltage
induced in the element (0, m) will now depend on the
current in the element (1, m) and vice versa. And of course
the currents on the two sides of the boundary obey now
different relationships firstly because the x-components of
the propagation vector are different and secondly because
there is now an additional reflected wave in medium 1 and
only a single transmitted wave in medium 2. The currents
can be assumed in the form:

In,m =I0{ exp(−jnkx1a) + R exp(jnkx1a)}
× exp(−jmky1a) n ≤ 0

In,m =I0T exp(−jnkx2a) exp(−jmky2a) n ≥ 1. (11)

Here I0 is the amplitude of the incident wave, and R and
T are the reflection and transmission coefficients respec-
tively. Note that ky1= ky2 so that the y-variation is the
same in both media. Away from the boundary, these so-
lutions satisfy the governing equations for the two bulk
media. However, at the boundary itself, we must solve the
modified equations:

{jωL + 1/jωC1}I0,m + jωMx(I1,m + I−1,m)
+ jωMy(I0,m+1 + I0,m−1) = 0

{jωL + 1/jωC2}I1,m + jωMx(I2,m + I0,m)
+ jωMy(I1,m+1 + I1,m−1) = 0. (12)

Here, C1 and C2 are the capacitances in medium 1 and
medium 2, respectively. Substitution of equations (11) into
equations (12) yields two simultaneous equations for R
and T , which can be solved to obtain:

R =
−{ exp(−jkx2a) − exp(−jkx1a)}
{ exp(−jkx2a) − exp(+jkx1a)}

T =
exp(−jkx1a) − exp(+jkx1a)

{ exp(−jkx2a) − exp(+jkx1a)} . (13)

Equation (12) implies that both coefficients depend only
on the x components of the propagation vector on the two
sides. When the two media are identical, i.e. kx1 = kx2,
the above expressions may be seen to reduce to R = 0
and T = 1 as expected. It may also be seen that |R|2 =
1 when kx2 is purely imaginary, indicating total internal
reflection.

The reflection coefficient in equation (12) agrees with
equation (5.115) in Tretyakov’s book [19], although the
two formulae have been derived for quite different cases.
Tretyakov’s formula is for an incident electromagnetic
wave, and is derived by ignoring the boundary. Equa-
tion (12) is for a MI wave incident from a periodic medium,
and the effect of the boundary is taken exactly into ac-
count within the accuracy of the nearest neighbour in-
teraction assumption. The reason for the agreement is
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twofold; firstly waves of different kinds may obey the
same relationships and secondly, more importantly, we
have chosen here a simple arrangement where the coupling
across the boundary is the same as in the bulk media. As
a result, the boundary has no special influence. The same
is not true in other cases.

As an example, we consider a case that is only slightly
different, when the self-inductances are also different on
either side of the boundary. As a result, the mutual in-
ductances must also be different; we take them as Mx1

and My1 in the x- and y-directions in medium 1 and Mx2

and My2 in medium 2. Across the boundary, the mutual
inductance must have a value that is different from both
Mx1 and Mx2; we take this as Mx3. The equations we must
solve at the boundary are therefore:

{jωL1 + 1/jωC1}I0,m + jωMx3I1,m + jωMx1I−1,m

+jωMy1(I0,m+1 + I0,m−1) = 0
{jωL2 + 1/jωC2}I1,m + jωMx2I2,m + jωMx3I0,m

+jωMy2(I1,m+1 + I1,m−1) = 0. (14)

Substituting equations (11) into equations (14) and solv-
ing for R and T , we now obtain:

R =
−{M2

x3 exp(−jkx2a) − Mx1Mx2 exp(−jkx1a)}
{M2

x3 exp(−jkx2a) − Mx1Mx2 exp(+jkx1a)}
T =

Mx1Mx3{ exp(−jkx1a) − exp(+jkx1a)}
{M2

x3 exp(−jkx2a) − Mx1Mx2 exp(+jkx1a)} ·
(15)

Clearly, equation (15) is no longer identical to the simple
formula derived by Tretyakov, since the coupling elements
Mx1, Mx2 and Mx3 now appear; in fact, it corresponds to
the solution found in [20] for coupling between dissimilar
coupled waveguide arrays.

Further geometric modifications — as in our previous
example 3 — generate additional departures from the sim-
ple solution. It is more difficult to derive the reflection and
transmission coefficients in this case, because the elements
in medium 2 are shifted relative to those in medium 1. This
aspect requires the introduction of a new numbering of the
rows as m − 1/2, m + 1/2, etc., as shown in Figure 7a.
Kirchhoff’s equations across the boundary must now take
into account five, instead of four, nearest neighbours. The
boundary equations are now:

{jωL + 1/jωC}I0,m + jωMx1I−1,m

+ jωMxy(I1,m+1/2 − I1,m−1/2)

+ jωMy1(I0,m+1 + I0,m−1) = 0
{jωL + 1/jωC}I1,m−1/2 − jωMxy(I0,m − I0,m−1)

+ jωMx2I2,m−1/2

+ jωMy2(I1,m+1/2 + I1,m−3/2) = 0. (16)

Here Mx1, My1, Mx2 and My2 are the mutual inductances
in medium 1 and 2 in the x and y directions, and Mxy is
the mutual inductance across the boundary between the
elements (0, m) and (1, m+1/2). By symmetry, the mu-
tual inductance between elements (0, m) and (1, m−1/2)

is −Mxy. Substituting equations (11) into equations (14)
and solving for R and T , we now obtain:

R =

−{4M2
xysin

2(ky1a/2)exp(−jkx2a)−Mx1Mx2exp(−jkx1a)}
{4M2

xysin
2(ky1a/2)exp(−jkx2a)−Mx1Mx2exp(+jkx1a)}

T =
2jMx1Mxy sin(ky1a/2){ exp(−jkx1a) − exp(+jkx1a)}

{4M2
xy sin2(ky1a/2)exp(−jkx2a) − Mx1Mx2 exp(jkx1a)} .

(17)

Equation (17) now contains not only the mutual induc-
tances Mx1, Mx2, and Mxybut also the y-components of
the k-vectors appearing in the problem. Effectively, this
is because each element (1, m− 1/2) receives phased con-
tributions from elements (1, m) and (0, m − 1) across
the boundary, giving rise to a further departure from the
simple solution. One clear difference is therefore that the
transmission is zero when ky1a = 0, so that total reflection
occurs at normal incidence.

Finally, we consider power flow. It is, obviously, a re-
quirement that the x component of the power density
vector must be conserved across the boundary. It should
therefore follow that:

Mx1 sin(kx1a){1 − |R|2} = Mx2 sin(kx2a) |T |2. (18)

Substituting the values of R and T from the examples
above, we find after some algebra that power is indeed
conserved in each case.

5 Conclusions

The reflection and refraction of magnetoinductive waves
propagating along discrete sets of capacitively loaded
loops have been studied in the nearest-neighbor interac-
tion approximation for the two-dimensional case. Three
examples have been investigated. In the first two configu-
rations, the loop orientations are identical in the two me-
dia, the waves propagating are backward waves and the
mutual inductance across the boundary is assumed to be
the same as the mutual inductances in the bulk media. It
has been shown that under these conditions the refraction
is positive. In the third example, when the orientations
of the loops are different in the two media, it has been
shown that each medium is capable of propagating both
forward and backward waves and negative refraction may
occur when the waves are forward on both sides.

Reflection and transmission coefficients have been de-
rived based on the method of reference [20]. For the first
two cases those coefficients have been shown to depend
only on the x-components of the propagation vectors on
the two sides, whereas for the more general third case the
coefficients depend not only on the propagation vector but
also on all the mutual inductances. The power density car-
ried by the MI wave is determined, and it is shown that
its normal component is conserved across the boundary.
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